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An Iterative Measured Equation Technique
for Electromagnetic Problems
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Abstract—An iterative measured equation technique (IMET) is
presented for a numerical solution of electromagnetic problems.
This technique is an extension and improvement of the method
of measured equation of invariance (MEI). In this technique, an
iterative scheme is designed in such a way that a new set of
metrons used to generate the measured equations is formed in
each iteration based on the solution of the previous iteration. The
new metrons are more meaningful in that they converge to the
physical quantity of interest such as the surface current density
for electrodynamic problems and the surface charge density
for electrostatic problems. The IMET offers several advantages
over the MEI method because it requires only two mesh layers,
resulting in a significant reduction in the memory requirement
and computing time. More importantly, it provides a means for
a systematic improvement of the accuracy of solution. The IMET
is applied successfully to two-dimensional (2-D) electrodynamic
and three-dimensional (3-D) electrostatic problems. Numerical
results show that the technique is highly accurate and the iterative
process converges very quickly, usually within two iterations.

Index Terms—Absorbing boundary condition, electromagnetic
scattering, iterative algorithm.

I. INTRODUCTION

W HEN solving open-region electromagnetic problems
using the finite-difference or finite-element method,

the infinite region exterior to the object must be truncated
with an artificial boundary to limit the number of unknowns.
Consequently, a boundary condition must be introduced at
this artificial boundary for a unique solution. Two classes
of such boundary conditions have been developed in the
past. The first class of boundary conditions is derived from
the boundary integral equations (BIE’s) involving Green’s
functions. These boundary conditions are exact and can be
applied directly at the surface of the object. However, because
of the Green’s function, the numerical system corresponding
to such boundary conditions is a dense matrix, which is
expensive to solve and store. The second class of boundary
conditions is derived from the differential wave equations
and are called absorbing boundary conditions (ABC’s). These
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boundary conditions maintain the sparsity of the system ma-
trix. However, they do not lead to exact solutions because of
the approximations introduced in their derivation.

Recognizing the shortcomings of both BIE’s and ABC’s,
Mei et al.have introduced the method of measured equation of
invariance (MEI) [1]. This method derives localized boundary
conditions from global BIE’s and, as a result, is more accurate
than ABC’s. It has been applied successfully to a number of
problems, such as the scattering analysis [2]–[4], microstrip
discontinuity characterization [5], and parameter extraction in
VLSI circuits [6], [7]. In the MEI method, the accuracy of the
solution is mainly controlled by the number of mesh layers
surrounding the object, the number of points or nodes at which
the measured equations are calculated, and the number of
metrons used to generate the measured equations. Generally
speaking, the solution accuracy improves as these numbers
increase. However, it is difficult to estimate and improve the
accuracy and know whether the solution has converged to
the true solution without performing new computations using
a different number of mesh layers, MEI nodes, or metrons.
Furthermore, it is also difficult to utilize the result from the
previous calculations in the new computation.

In this paper, we present an iterative technique to alleviate
the limitations of the MEI method described above. In this
technique, the accuracy of the solution is improved through
an iterative process without increasing the number of mesh
layers, MEI nodes, and metrons. This iterative scheme is
designed in such a way that a new set of metrons used to
generate the measured equations is formed in each iteration
based on the solution of the previous iteration. The new
metrons are more meaningful in that they converge to the
physical quantity of interest such as the surface current density
for electrodynamic problems and the surface charge density
for electrostatic problems. This method is termed as the
iterative measured equation technique (IMET) and its most
important advantage is that it provides a means for a systematic
improvement of the accuracy of the solution. Because of
this, the number of mesh layers used in the IMET can be
reduced to two, resulting in a significant reduction in the
memory requirement and computing time. To a certain extent,
the idea of the IMET is similar to that of the adaptive
ABC developed for two-dimensional (2-D) problems by Yi
and Cendes [8] and for three-dimensional (3-D) problems
developed by Jin and Lu [9]. In this paper, we apply the
IMET to 2-D electrodynamic and 3-D electrostatic problems
and demonstrate through numerical results that the technique
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(a) (b) (c) (d)

Fig. 1. Configuration of the problems. (a) Cylinder. (b) Square plate. (c)
Two parallel plates. (d) Cube.

(a) (b) (c)

Fig. 2. Arrangement of MEI nodes for 2-D problems. (a) Two-point node.
(b) Four-point node. (c) Six-point node.

is highly accurate and the iterative process converges very
quickly, usually within two iterations.

II. FORMULATION

This section describes the basic principle of the IMET.

A. The Problems

For simplicity, we consider only 2-D electrodynamic and
3-D electrostatic problems. However, the same idea can be
applied to other problems without any conceptual difficulty.

The 2-D electrodynamic problem is illustrated in Fig. 1(a),
where a TM polarized plane wave is scattered by an infinitely
long conducting cylinder. We useto represent the scattered-
field component . Hence, satisfies the Helmholtz equation

(1)

where is the Laplace operator in the 2-D coordinate system
and denotes the free-space wavenumber. The problem is to
find for a given incident field .

The 3-D electrostatic problems to be considered are depicted
in Fig. 1(b)–(d). The problem is to find the potential and
charge distributions on a square plate, two-plate capacitor, and
cube for a given voltage. The electric potential, denoted as,
satisfies the Laplace equation

(2)

where is the 3-D Laplace operator.

B. Discretization

Similar to the MEI method, a discretization is made outside
the object surface. However, only two mesh layers are needed
in the IMET. The mesh layers for the 2-D problem are shown
in Fig. 2, along with the arrangement of the MEI nodes.
The meshes for the 3-D problems are formed by two boxes
surrounding the object, as illustrated in Fig. 3(a), for the case
of a square plate. Also shown in Fig. 3 is the arrangement of
the MEI nodes for a surface, edge, and corner node.

(a) (b)

(c) (d) (e)

Fig. 3. Discretization schematics and arrangements of MEI nodes for 3-D
problems. (a) Rectangular plate surrounded by boxes. (b) Seven-point FD
scheme. (c) MEI nodes in a surface. (d) MEI nodes on an edge. (e) MEI
nodes at a corner.

The advantages of using the two-layer discretization are
obvious. First, it saves memory since the number of unknowns
is significantly reduced compared to a multilayer discretization
required in the MEI method. Second, it reduces the disper-
sion error in the finite-difference solution since this error is
proportional to the size of the discretization region. Third,
it simplifies the task of mesh generation; thus, making the
programming much easier.

C. IMET

Since the electrostatic problem is a limiting case of an
electrodynamic problem when the frequency approaches zero,
we describe the basic principle of the IMET only for the
electrodynamic problem whose differential equation is given in
(1). The five-point finite-difference discretization of (1) yields
the equation

(3)

Applying this equation to the nodes on the interior layer, we
obtain the matrix equation

(4)

where , in which
denotes the number of unknowns on the interior layer and
denotes the number of unknowns on the exterior layer. Also,

is a sparse matrix having a dimension of , and
is a column vector related to the incident field.

To obtain the remaining equations, we apply the MEI
method to a node on the exterior layer, yielding the equation

(5)

where are the MEI coefficients to be determined, and
denotes the number of points in the MEI scheme, which can
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Fig. 4. Surface current on a circular conducting cylinder having a radius of
0:5�.

be two, four, and six, as shown in Fig. 2. Applying (5) to the
nodes on the exterior layer, we obtain another matrix equation

(6)

where is a sparse matrix having a dimension of .
Combining (4) and (6), we obtain the complete system of
equations

(7)

which can be solved for .
It remains to determine the coefficients in (5). For this,

we introduce different metrons assumed on the
object surface. Using these metrons as the current density to
measure the scattered field on the nodes, we have

(8)

where is the Green’s function and denotes the
surface of the object. Using (8) and following the same pro-
cedure as described in [1], we can determine the coefficients

in (5) and, thus, the coefficient matrix in (6). Since
is determined from the metrons, we can symbolically write

(9)

where is a column vector denoting the metrons used.
The procedure describe above is that of the standard MEI

method. However, since we use only two mesh layers here, the
matrix relation (6) is not accurate enough for a good solution.

In this case, we can calculate the current density
based on the solution of . This current is then used to replace
the first metron and the new set of metrons can be written
symbolically as

(10)

Fig. 5. Surface current on a circular conducting cylinder having a radius of
1:0�.

Using this new set of metrons, we can find a new, which
yields a new solution by solving (7) again. The process can be
repeated until a convergence is achieved. This iterative process
can be expressed as

(11)

where

(12)

Note that in (12), the new set of metrons is obtained by
replacing the th existing metron with the new metron
obtained from . If , the - th existing
metron is replaced with the new metron.

To check the convergence of solution, an error criterion is
defined as

(13)

where stands for the norm of vector. We note that as
the iteration proceeds, all the metrons become the same. As
a result, the matrix equation to determine the coefficients in
(5) would become singular. However, this does not happen
because the iteration is terminated when the metrons converge
to the same value.

III. N UMERICAL RESULTS

This section presents some numerical examples to demon-
strate the performance and the accuracy of the IMET.

A. Scattered-Field Computation

We first apply the IMET to calculate the surface electric
current on a circular conducting cylinder illuminated by a TM
plane wave. The numerical results are given in Figs. 4–6 for
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Fig. 6. Surface current on a circular conducting cylinder having a radius of
10�.

TABLE I
COMPARISON OF CPU TIME

cylinders having a radius of , , and , respectively.
As can be seen, the IMET has a high accuracy and is valid
for a wide range of dimension. For the same accuracy, the
MEI method requires more mesh layers and more metrons. For
example, in the case of the cylinder having a radius of ,
the MEI method requires six mesh layers and eight metrons
to obtain an accuracy that can be achieved by the IMET with
only two mesh layers, three metrons, and two iterations. As
a result, the IMET saves memory by a factor of three and
computing time by a factor of 3.3 since it solves a smaller
banded matrix with a smaller bandwidth. For this problem, it
is observed that the numerical results at and after the third
iterations are almost the same as those of the second iteration,
which indicates a fast convergence of the IMET. The central
processing unit (CPU) time on a PC586/100 needed for this
problem is given in Table I and is compared to those required
for the MEI method and the method of moments (MoM).

The accuracy of different MEI schemes, namely the two-,
four-, and six-point schemes, is compared in Fig. 7, where

denotes the number of iterations. The reason to employ
the two-point scheme is that it uses fewer metrons and less
memory and it avoids the matrix inversion in the determination
of the coefficients in (6). However, the results show that this
scheme is less accurate even after three iterations because it
does not model the variation along the direction tangential
to the object’s surface; therefore, the two-point scheme is
not recommended. On the other hand, although the four- and

Fig. 7. Surface current on a circular conducting cylinder having a radius of
computed1:0� using different number of points and iterations.

six-point schemes require slightly more memory and CPU
time, their solutions have a good accuracy and converges very
quickly.

We then apply IMET to a square cylinder, with
the result shown in Fig. 8. Clearly, the agreement between the
IMET and MoM results is better than that between the MEI
and MoM results. Our numerical experiments reveal that an
increase in the number of metrons does not always lead to an
effective improvement in the accuracy of the solution. On the
contrary, it can slow down the convergence of the IMET. This
is demonstrated by the results obtained using three and eight
metrons after two iterations, shown in Fig. 9. The reason is
that the coefficients in (6) are determined by the least-squares
method with the nodal values measured by different metrons.
The weight of the metron obtained using the solved current
is lessened when the number of metrons is increased. This
weight can only be increased with the number of iterations.
Thus, with only two iterations, the IMET using eight metrons
can give a less accurate result than the IMET with three or
five metrons.

Finally, we apply the IMET to a concave conducting cylin-
der and the result is shown in Fig. 10. Again, the agreement
between the IMET and MoM results is better than that between
the MEI and MoM results.

B. Capacitance Calculation

When the frequency approaches zero, an electrodynamic
problem becomes an electrostatic problem. The surface charge
density on the object is then employed as the metron to
measure the electrical potential in the MEI nodes. We first
calculate the capacitance of a unit square plate using two
boxes to enclose the plate. The capacitance calculated by the
MEI method is pF, and that by the IMET is

pF after one iteration. The approximate value
given in [10] is pF and that calculated by the
MoM is pF.
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Fig. 8. Surface current on a square conducting cylinder having side length
of 1:0�.

Fig. 9. Surface current on a square conducting cylinder having a side length
of 1:0� computed using different number of metrons.

We then consider a parallel-plate capacitor of unit square.
The image theory is employed to determine the Green’s
function in this case since the symmetric plane between the
two plates can be considered as the ground if the two plates are
imposed with opposite excitations. The calculated capacitance
is plotted in Fig. 11 as a function of the distance between
the plates and compared to that in [11]. The value calculated
in the second iteration is almost the same as that calculated
in the first iteration. As expected, the value of capacitance
approaches half the value of one plate alone in space, namely
20 pF, as .

Finally, we consider a more general 3-D object, which is the
unit cube in Fig. 1(d). By symmetry, the discretization is made
for one eighth of the cube. The MEI method gives the value
of capacitance pF. With the IMET, the value

Fig. 10. Surface current on a concave conducting cylinder.

Fig. 11. Capacitance of two parallel plates versus their separation.

is pF after the first iteration and
pF after the second iteration. The available result is found in
[12] with pF. The MEI method takes quite a
few mesh layers around the cube to obtain the approximate
solution, whereas IMET uses only two mesh layers with one
iteration. The charge density on one surface of the cube is
plotted in Fig. 12. The charge density has a maximum value
of 62.52 C/m at the cube’s corners and a minimum value of
6.68 C/m at the center of the surface.

IV. CONCLUSION

In this paper, an IMET is presented for a numerical solution
of electromagnetic problems. In this technique, an iterative
scheme is designed in such a way that a new set of metrons
used to generate the measured equations is formed in each
iteration based on the solution of the previous iteration. The
new metrons are more meaningful in that they converge to
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Fig. 12. Charge density on one surface of a cube.

the physical quantity of interest such as the surface current
density for electrodynamic problems and the surface charge
density for electrostatic problems. The IMET requires only
two mesh layers, resulting in a significant reduction in the
memory requirement and computing time. More importantly,
it provides a means for a systematic improvement of the
accuracy of solution. The IMET is applied successfully to
2-D electrodynamic and 3-D electrostatic problems. Numerical
results show that the technique is highly accurate and the
iterative process converges very quickly, usually within two
iterations.
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