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An lterative Measured Equation Technique
for Electromagnetic Problems

Jun Chen, Wei HongMember, IEEE and Jian-Ming JinSenior Member, IEEE

Abstract—An iterative measured equation technique (IMET) is boundary conditions maintain the sparsity of the system ma-

presented for a numerical solution of electromagnetic problems. trix. However, they do not lead to exact solutions because of
This technique is an extension and improvement of the method the approximations introduced in their derivation

of measured equation of invariance (MEI). In this technique, an . . \ ,
iterative scheme is designed in such a way that a new set of €cognizing the shortcomings of both BIE's and ABC's,

metrons used to generate the measured equations is formed in Mei et al. have introduced the method of measured equation of
each iteration based on the solution of the previous iteration. The invariance (MEI) [1]. This method derives localized boundary
new metrons are more meaningful in that they converge to the conditions from global BIE's and, as a result, is more accurate

physical quantity of interest such as the surface current density ) ;
for electrodynamic problems and the surface charge density than ABC’s. It has been applied successtully to a number of

for electrostatic problems. The IMET offers several advantages Problems, such as the scattering analysis [2]-{4], microstrip
over the MEI method because it requires only two mesh layers, discontinuity characterization [5], and parameter extraction in
resulting in a significant reduction in the memory requirement VLS| circuits [6], [7]. In the MEI method, the accuracy of the
and computing time. More importantly, it provides a means for - gq|ytion is mainly controlled by the number of mesh layers
a systematic improvement of the accuracy of solution. The IMET - . . .

is applied successfully to two-dimensional (2-D) electrodynamic surrounding the objec_t, the number of points or nodes at which
and three-dimensional (3-D) electrostatic problems. Numerical the measured equations are calculated, and the number of
results show that the technique is highly accurate and the iterative metrons used to generate the measured equations. Generally

process converges very quickly, usually within two iterations.  speaking, the solution accuracy improves as these numbers

Index Terms—Absorbing boundary condition, electromagnetic increase. However, it is difficult to estimate and improve the
scattering, iterative algorithm. accuracy and know whether the solution has converged to
the true solution without performing new computations using

a different number of mesh layers, MEI nodes, or metrons.

I. INTRODUCTION Furthermore, it is also difficult to utilize the result from the

previous calculations in the new computation.

S In this paper, we present an iterative technique to alleviate
e limitations of the MEI method described above. In this
chnique, the accuracy of the solution is improved through

with an artificial boundary to I|m|t_ t_he number Of. unknownsaq iterative process without increasing the number of mesh
Consequently, a boundary condition must be introduced a s . :
layers, MEI nodes, and metrons. This iterative scheme is

this artificial boundary for a unique solution. Two classes” . .
o . esigned in such a way that a new set of metrons used to
of such boundary conditions have been developed in the . . . . .
! I ; . enerate the measured equations is formed in each iteration
past. The first class of boundary conditions is derived fro

. ) N ) ased on the solution of the previous iteration. The new
the boundary integral equations (BIE’s) involving Green’s . .
etrons are more meaningful in that they converge to the

functions. These boundary conditions are exact and can esical uantity of interest such as the surface current densit
applied directly at the surface of the object. However, beca q Y Yy
electrodynamic problems and the surface charge density

of the Green’s function, the numerical system correspondi . . .
y b I electrostatic problems. This method is termed as the

to such boundary conditions is a dense matrix, which i q tion techni IMET d it ¢
expensive to solve and store. The second class of boundify2llve measured equation technique ( ) and its mos

conditions is derived from the differential wave equation'§n ortant advantage is that it provides a means for a systematic

and are called absorbing boundary conditions (ABC's). ThellBProvement of the accuracy of the solution. Because of
this, the number of mesh layers used in the IMET can be

reduced to two, resulting in a significant reduction in the
Manuscript received June 18, 1996; revised October 9, 1997. This wdikemory requirement and computing time. To a certain extent,
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Fig. 1. Configuration of the problems. (a) Cylinder. (b) Square plate. (c) @) ()
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eizig. 3. Discretization schematics and arrangements of MEI nodes for 3-D
problems. (a) Rectangular plate surrounded by boxes. (b) Seven-point FD
scheme. (c) MEI nodes in a surface. (d) MEI nodes on an edge. (e) MEI
. . . . nodes at a corner.

is highly accurate and the iterative process converges very

quickly, usually within two iterations.

Fig. 2. Arrangement of MEI nodes for 2-D problems. (a) Two-point nod
(b) Four-point node. (c) Six-point node.

The advantages of using the two-layer discretization are
obvious. First, it saves memory since the number of unknowns
) ] . S is significantly reduced compared to a multilayer discretization

This section describes the basic principle of the IMET. required in the MEI method. Second, it reduces the disper-

sion error in the finite-difference solution since this error is
A. The Problems proportional to the size of the discretization region. Third,

For simplicity, we consider only 2-D electrodynamic andf simplifies the task of mesh generation; thus, making the
3-D electrostatic problems. However, the same idea can B@gramming much easier.
applied to other problems without any conceptual difficulty.

The 2-D electrodynamic problem is illustrated in Fig. 1(a)¢. IMET
where a TM polariz_ed plane wave is scattered by an infinitely sjnce the electrostatic problem is a limiting case of an
long conducting cylinder. We usgto represent the scattered-g|ectrodynamic problem when the frequency approaches zero,
field component .. Hence ¢ satisfies the Helmholtz equationyye gescribe the basic principle of the IMET only for the

(V2 4+ k2)p=0 1) electrodynamic problem whose differential equation is given in
(1). The five-point finite-difference discretization of (1) yields
whereV? is the Laplace operator in the 2-D coordinate systethe equation

Il. FORMULATION

andkg denotes the free-space wavenumber. The problem is to 4
find ¢ for a given incident fieldp™c. Z axdr = 0. A3)
The 3-D electrostatic problems to be considered are depicted o

in Fig. 1(b)-(d). The problem is to find the potential and . _ _ o

charge distributions on a square plate, two-plate capacitor, £MeP!Ying this equation to the nodes on the interior layer, we
cube for a given voltage. The electric potential, denoteg,as ©Ptain the matrix equation

satisfies the Laplace equation [A][¢] = [b] (4)

2
v ¢($7y7 Z) =0 (2) where [d)] = [¢17¢27"'7¢p7¢p+17"'7¢p+(1]T1 in which p
denotes the number of unknowns on the interior layer @nd
denotes the number of unknowns on the exterior layer. Also,
[A] is a sparse matrix having a dimensiongok (p + ¢), and
b] is a column vector related to the incident field.

Similar to the MEI method, a discretization is made outside 1o obtain the remaining; equations, we apply the MEI
the object surface. However, only two mesh layers are need@gthod to a node on the exterior layer, yielding the equation
in the IMET. The mesh layers for the 2-D problem are shown
in Fig. 2, along with the arrangement of the MEI nodes.
The meshes for the 3-D problems are formed by two boxes Z brdr =0 (5)
surrounding the object, as illustrated in Fig. 3(a), for the case
of a square plate. Also shown in Fig. 3 is the arrangementwhere b;, are the MEI coefficients to be determined, amd
the MEI nodes for a surface, edge, and corner node. denotes the number of points in the MEI scheme, which can

where V2 is the 3-D Laplace operator.

B. Discretization
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be two, four, and six, as shown in Fig. 2. Applying (5) to th&Jsing this new set of metrons, we can find a ngsy, which
nodes on the exterior layer, we obtain another matrix equatigieglds a new solution by solving (7) again. The process can be
repeated until a convergence is achieved. This iterative process

[Bll¢] =0 (6) can be expressed as
where[B] is a sparse matrix having a dimensiongof (p+¢). —1rp
Combining (4) and (6), we obtain the complete system of [p]*+D) = L@(L}cﬂ))} [0} (11)
equations

Sla=| o " )

B = o P = (g ®). (12)
which can be solved fofg]. Note that in (12), the new set of metrons is obtained by

It remains to determine the coefficierits in (5). For this, replacing the(k + 1)th existing metron with the new metron
we introduce M different metronsy;(7 ) assumed on the obtained from{¢]®). If k41 > M, the (k4 1-M)th existing
object surface. Using these metrons as the current densityrtetron is replaced with the new metron.

measure the scattered field on the nodes, we have To check the convergence of solution, an error criterion is
L defined as
d)ZJ = / P(/}J(7 )G(Tiv r )dllv J =12, '7M (8) —(k+1)  —=(k)
—(k+1)
17l

where G(7;,7 ) is the Green’s function an#l denotes the
surface of the object. Using (8) and following the same prevhere || « || stands for the norm of vector. We note that as
cedure as described in [1], we can determine the coefficieftie iteration proceeds, all the metrons become the same. As
b in (5) and, thus, the coefficient matri®] in (6). Since[B] a result, the matrix equation to determine the coefficients in
is determined from the metrons, we can symbolically write (5) would become singular. However, this does not happen
[B] = £L(¥) ©) because the iteration is terminated when the metrons converge

to the same value.

where) is a column vector denoting the metrons used.

The procedure describe above is that of the standard MEI lll. NUMERICAL RESULTS
method. However, since we use only two mesh layers here, therig section presents some numerical examples to demon-
matrix relation (6) is not accurate enough for aigood Soﬂjt'ogtrate the performance and the accuracy of the IMET.
In this case, we can calculate the current dengity: 7 x H
based on the solution @f]. This current is then used to replaces, Scattered-Field Computation
the first metron and the new set of metrons can be written

symbolically as We first apply the IMET to calculate the surface electric

B current on a circular conducting cylinder illuminated by a TM
1 = H([$]). (10) plane wave. The numerical results are given in Figs. 4—6 for
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10.
six-point schemes require slightly more memory and CPU
TABLE | time, their solutions have a good accuracy and converges very
CoMPARISON OF CPU TiME quickly. _ _
AT Vi oM We then appIyIIMET to aA x 1A square cylinder, with
Tiorations 1 2 3 n the result shown in Fig. 8. Clearly, the agreement between the
Inversion | 1.6s | 32s | 4.8s | 64s 1445 IMET and MoM results is better than that between the MEI
Total 27s | 51s | 74s | 98s 169s 57.4s and MoM results. Our numerical experiments reveal that an

increase in the number of metrons does not always lead to an

effective improvement in the accuracy of the solution. On the
cylinders having a radius @5\, 1.0, and10), respectively. contrary, it can slow down the convergence of the IMET. This
As can be seen, the IMET has a high accuracy and is valfddemonstrated by the results obtained using three and eight
for a wide range of dimension. For the same accuracy, tReetrons after two iterations, shown in Fig. 9. The reason is
MEI method requires more mesh layers and more metrons. gt the cgefﬁments in (6) are determined by t_he least-squares
example, in the case of the cylinder having a radiud.of, method.wnh the nodal values measure_d by different metrons.
the MEI method requires six mesh layers and eight metroh§€ Weight of the metron obtained using the solved current
to obtain an accuracy that can be achieved by the IMET with !essened when the number of metrons is increased. This
only two mesh layers, three metrons, and two iterations. Neeight can only be _mcre_ased with the number_of iterations.
a result, the IMET saves memory by a factor of three aﬁlams,.wnh only two iterations, the IMET using elght metrons
computing time by a factor of 3.3 since it solves a small&2n 9ive a less accurate result than the IMET with three or
banded matrix with a smaller bandwidth. For this problem, {{vé metrons. _ _
is observed that the numerical results at and after the thirdminally, we apply the IMET to a concave conducting cylin-
iterations are almost the same as those of the second iteratfl§, 2nd the result is shown in Fig. 10. Again, the agreement
which indicates a fast convergence of the IMET. The Centr%gtween the IMET and MoM results is better than that between
processing unit (CPU) time on a PC586/100 needed for e MEI and MoM results.
problem is given in Table | and is compared to those required
for the MEI method and the method of moments (MoM). B. Capacitance Calculation

The accuracy of different MEI schemes, namely the two-, When the frequency approaches zero, an electrodynamic

four-, and six-point schemes, is compared in Fig. 7, whepgoblem becomes an electrostatic problem. The surface charge
I denotes the number of iterations. The reason to empldgnsity on the object is then employed as the metron to
the two-point scheme is that it uses fewer metrons and lasgasure the electrical potential in the MEI nodes. We first
memory and it avoids the matrix inversion in the determinatiatalculate the capacitance of a unit square plate using two
of the coefficients in (6). However, the results show that thisoxes to enclose the plate. The capacitance calculated by the
scheme is less accurate even after three iterations becausdbt method isC' = 37.748 pF, and that by the IMET is
does not model the variation along the direction tangenti@l = 39.945 pF after one iteration. The approximate value
to the object’'s surface; therefore, the two-point scheme géven in [10] isC = 39.94 pF and that calculated by the
not recommended. On the other hand, although the four- akldM is C' = 39.5 pF.
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Fig. 9. Surface current on a square conducting cylinder having a side lenggh(C' = 73.286 pF after the first iteration and’ = 72.588
of 1.0 computed using different number of metrons. pF after the second iteration. The available result is found in
[12] with C = 72.322 pF. The MEI method takes quite a

We then consider a parallel-plate capacitor of unit squafew mesh layers around the cube to obtain the approximate

The image theory is employed to determine the Greergslution, whereas IMET uses only two mesh layers with one

function in this case since the symmetric plane between theration. The charge density on one surface of the cube is

two plates can be considered as the ground if the two plates pistted in Fig. 12. The charge density has a maximum value

imposed with opposite excitations. The calculated capacitangfe62.52 C/ni at the cube’s corners and a minimum value of

is plotted in Fig. 11 as a function of the distance betwee68 C/n? at the center of the surface.

the plates and compared to that in [11]. The value calculated

in the second iteration is almost the same as that calculated

in the first iteration. As expected, the value of capacitance IV. CONCLUSION

approaches half the value of one plate alone in space, namelin this paper, an IMET is presented for a numerical solution

20 pF, asd/a — oo. of electromagnetic problems. In this technique, an iterative
Finally, we consider a more general 3-D object, which is trecheme is designed in such a way that a new set of metrons

unit cube in Fig. 1(d). By symmetry, the discretization is madesed to generate the measured equations is formed in each

for one eighth of the cube. The MEI method gives the valuteration based on the solution of the previous iteration. The

of capacitanceC’ = 61.466 pF. With the IMET, the value new metrons are more meaningful in that they converge to



30 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 1, JANUARY 1998

[10] D. K. Reitan and T. J. Higgins, “Accurate determination of the capac-
itance of a thin rectangular plateTrans. Amer. Inst. Elect. Engvol.
75, pt. 1, pp. 761-766, 1957.

[11] D. K. Reitan, “Accurate determination of the capacitance of rectangular

B R
\
oA
\
RN VS W S|

! i !
/ /
7
/
/
/
’/
.
/
/
/
-
/
/
/
/
|
um
=]

PR e Eggagllel-plate capacitorsJ. Appl. Phys.vol. 30, no. 2, pp. 172-176,
,@: - ! d T [12] D. K. Reitan and T. J. Higgins, “Calculation of the electrical capacitance
E ] il T — of a cube,”J. Appl. Phys.vol. 22, no. 2, pp. 223-226, 1951.

| . i (TR

S m——
S
2

X

=
/
!
/
itk

© }// ¥/¥ (
W i

<
<
st

& '
i

il
LIRS i
Jliliksessenp
LA
3 =

.

\ i
SR
i =

iy

-

Jun Chenwas born in Nanjing, China, in 1969. He

\ \‘\\‘\\\g&sﬁs g.}:,.g.’«,‘{z"z% / // received the B.S. and the M.S. degrees in microwave
\\\\“é&iﬁi& .';'.,'2'7////// 10 telecommunication engineering from Xidian Uni-
10 \\\ \ //////// versity (formerly Northwest Institute of Telecom-
\\\\\\\\\\\\ //////I// Tl munication Engineering), Xi'an, China, in 1991 and

A = \\\\\\“\\\\\!\‘\ ) lll”//lll/ T 1994, respectively, and the Ph.D. degree in radio
;:.X\\ ) \\\\‘_!!3;.;',,,,,/ - engineering from Southeast University, Nanjing,

%<\\</ \X T China, in 1997.

e B = e From 1994 to 1997, he was a Research Assistant
o S in the State Key Laboratory of Millimeter Waves,

e\\\j«{ : : - Southeast University. Since 1997, he has been a

Post-Doctoral Research Fellow in the Department of Electrical and Computer
Engineering, University of lllinois at Urbana-Champaign (UIUC). He worked

on the theory of microwave networks, design of communication systems,
stealth research, propagation prediction for mobile systems, and complex

. . . image theory. He has authored over ten papers in international journals
the physical quantity of interest such as the surface Curréarﬁ conference proceedings. His interests include numerical methods in

density for electrodynamic problems and the surface charggnputational electromagnetics, circuit and electromagnetic modeling of high-
density for electrostatic problems. The IMET requires on|§peed and high-frequency interconnects, and packages in VLSI circuits.
two mesh layers, resulting in a significant reduction in the

memory requirement and computing time. More importantly,

It prowdes a me‘."‘”S for a SySte.matIC |_mprovement of tr\lﬁei Hong (M'92) received the B.S. degree from Zhenzhou Institute of
accuracy of solution. The IMET is applied successfully t@echnology, Zhenzhou, China, in 1982, and the M.S. and Ph.D. degree from

2-D electrodynamic and 3-D electrostatic problems. Numericadutheast University, Nanjing, China, in 1985 and 1988, respectively, all in
results show that the technique is highly accurate and tfféctrical engineering.

. . . - ince 1988, he has been with the State Key Laboratory of Millimeter Waves,
iterative process converges very quickly, usually within twgg,,
iterations.

Fig. 12. Charge density on one surface of a cube.

theast University, where he is currently a Professor. In 1993 and 1995,
he was a Visiting Scholar at the University of California at Berkeley, and the
University of California at Santa Cruz, respectively. His research interests are
in numerical methods for electromagnetic problem, electromagnetic scattering,
antennas, interconnects in VLSI circuits, and microwave/millimeter-wave
systems.

[1] K. K. Mei, R. Pous, Z. Q. Chen, and Y. W. Liu, “The measured
equation of invariance: A new concept in field computatiolEEE
Trans. Antennas Propagatvol. 42, pp. 320-327, Mar. 1994.

[2] J. Chen and W. Hong, “lterative procedure in matrix form based on
MEI for scattering by multi-cylinders,Inst. Elect. Eng. Electron. Lett.
vol. 32, no. 12, pp. 1072-1074, June 1996.

[3] W. Hong, Y. W. Liu, and K. K. Mei, “Application of the measured
equation of invariance to solve scattering problems involving penetrak
medium,” Radio Sci. vol. 29, no. 4, pp. 897-906, 1994.

[4] J. Chen and W. Hong, “Analysis of a periodic dielectric layer loade
with metallic strips by FD-MEI method,” ifEEE APS Int. Symp. Dig.
Baltimore, MD, July 1996, pp. 1468-1471.

[5] M. D. Prouty, “Application of the measured equation of invariance t ) ’ - °
planar microstrip structures,” Ph.D. dissertation, Dept. EECS, Uni -‘,. working as a Senior Scientist at Otsuka Electronics,
California—Berkeley, 1994. _ _ Inc. He is currently an Associate Professor and

[6] W. K. Sun, W. W."M. Dai, and W. Hong, “Fast parameter extractiorfissociate Director of the Center for Computational Electromagnetics, UIUC.
of general three-dimension interconnects using geometry independki®t has published over 50 articles in refereed journals, several book chapters,
measured equation of invariancéEEE Trans. Microwave Theory Tech., ahd has authoredhe Finite Element Method in Electromagnetig/iley,
vol 45, pp. 827-836, May 1997. 1993), and co-authore@omputation of Special FunctiorfgViley, 1996). His

[71 W. Hong, W. K. Sun, and W. W. M. Dai, “Fast parameter extractiorgurrent research interests include computational electromagnetics, scattering
of multilayer and multiconductor interconnects using geometry indepe@nd antenna analysis, electromagnetic compatibility, and magnetic resonance
dent measured equation of invariance,” presented at the IEEE MCMC-®6aging.

Symp., Santa Cruz, CA, Feb. 1996. Dr. Jin is a member of Commission B of USNC/URSI and Tau Beta Pi. He

[8] Y. Li and Z. J. Cendes, “Adaptive absorbing boundary conditions foserves as an associate editor of the IEERNBACTIONS ON ANTENNAS AND
high accuracy scattering,” iEEE APS Int. Symp. Digvol. 1, Seattle, PropacaTiONand also as a member of the editorial boardefctromagnetics
WA, June 1994, pp. 402-405. Journal He is the recipient of the 1994 National Science Foundation Young

[9] J. M. Jin and N. Lu, “Application of adaptive absorbing boundarynvestigator Award, the 1995 Office of Naval Research Young Investigator
condition to finite element solution of three-dimensional scatteringAward, and the 1997 Junior Xerox Research Award given by the College of
Proc. Inst. Elect. Eng.vol. 143, no. 1, pt. H, pp. 57-61, Feb. 1996. Engineering at UIUC.

REFERENCES

Jian-Ming Jin (S'87-M'89-SM'94) received the
B.S. and M.S. degrees in applied physics from
Nanjing University, Nanjing, China, in 1982 and
1984, respectively, and the Ph.D. degree in electrical
engineering from the University of Michigan at Ann
Arbor, in 1989.

In 1993, he joined the faculty of the Department
of Electrical and Computer Engineering, Univer-
sity of lllinois at Urbana-Champaign (UIUC), after




